Драгоценные металлы, кроме высокой цены, имеют недостатки технического характера. В чистом виде золото, серебро и платина мягкие, поверхность быстро теряет блеск. Согласно мнению специалистов для производства бижутерии выгоднее применять ювелирные сплавы, потому что это дорогостоящие металлы, но с добавками, улучшающими их качества. При изготовлении украшений используется бижутерный сплав. Он внешне не отличается от золота различных проб, однако, стоит дешевле, поскольку не включает в свой состав дорогостоящие металлы, а только покрывается ими.
Украшение из ювелирного сплава
Описание сплава
Наиболее распространены золотые ювелирные сплавы,
но многие люди не знают что это такое и какие элементы входят в их состав
.
Их основной компонент — золото, содержание которого варьируется в пределах 75–98%. В качестве дополнительных компонентов может использоваться: серебро, медь, палладий, платина. Благодаря добавлению дополнительных металлов можно сделать сплав с любым оттенком — от красного до светло-желтого, зеленоватого.
Бижутерные сплавы применяют для изготовления дорогих украшений. Из них делают изделия с драгоценными камнями:
- кольца;
- колье;
- серьги;
- диадемы;
- зажимы для галстука;
- запонки.
Черные металлы, железоуглеродистые сплавы с добавками хрома и никеля, не относятся к бижутерийным, но из них делаются дешевые изделия, имитирующие белое золото и платину. Нержавеющая и хирургическая сталь стала применяться для изготовления различных аксессуаров с появлением в молодежной моде стилей модерн, гранж, панк. Сплав не темнеет от влаги и не вызывает аллергию.
Почему сплав?
Существует несколько причин, по которым необходимо сплавлять драгоценные металлы.
Прочность
Такие драгоценные металлы, как золото и серебро, слишком мягкие для практического использования. Из-за того, что они в чистом виде очень мягкие, ковкие и пластичные, необходимо улучшить характеристики металлов, увеличив их упругость, жесткость и износостойкость.
Экономичность
Стоимость чистых драгоценных металлов неизменно высока. Путем сплавления драгоценных металлов с менее дорогостоящими компонентами можно понизить стоимость конечного изделия.
Мода и дизайн
Дизайнеры производят то, что диктует мода. Легирование металла для изменения цвета или физических свойств, в свою очередь, определяется запросом дизайнера.
Золото, единственный в своем роде металл, который может сохранить свой сильный, уникальный золотой оттенок даже при легировании до 50%. Золото стало самым популярным и модным металлом с тех пор, как древняя женщина соблазнилась им, а мужчина смог добыть для нее драгоценности.
Платина ценится за ее прочный блеск, а также за химическую стойкость и высокую температуру плавления.
Статус
Хотя правительства стран больше не поддерживают свою валюту золотом, оно остается резервной валютой, универсальной и признанной во всех странах мира.
Обладание золотом, будь то самородок, слиток или ювелирные изделия, в большинстве культур — осязаемый признак вполне определенного статуса владельца. В течение 5000 лет люди сражались и умирали за обладание золотом. Показать свой высокий статус с помощью золота всегда была желанной целью.
Состав сплава
Бижутерия изготавливается из соединений цветных металлов. Внешне они не отличаются от золота или платины и даже повторяют их оттенок. Подобный бижутерийный сплав требует такого же ухода, что и ювелирные. Он отличается стойкостью к влаге, но реагирует с косметическими средствами и йодом. По техническим характеристикам материал прочный, легко сваривается и обрабатывается.
Покрытие на всех группах ювелирных сплавов делается из одинаковых металлов — гальванического золота, родия.
При производстве ювелирных сплавов кроме золота могут использовать:
- платину;
- серебро;
- кадмий;
- палладий;
- медь;
- цинк.
В основном количество добавок не превышает 10%. Исключение составляет серебро. Чем больше его состав, тем пластичнее и светлее становится сплав. Когда содержание серебра превышает 30%, золото становится светлым, беловато-желтым, с зеленоватым оттенком.
Содержание золота в сплаве указывает проба в тысячных долях. Проба 916 означает, что золота 91,6%, остальное —лигатура. Цифры 999 указывают на химически чистое вещество.
Состав на основе меди, цинка и латуни имитирует золото. В зависимости от пропорции компонентов может быть от червонного-красного до желтого.
Ювелирный сплав на основе олова широко применяется для изготовления бижутерии под платину и белое золото. Технология имеет древние корни. В качестве легирующих веществ добавляют:
- медь для пластичности;
- сурьма для яркости;
- алюминий для блеска и прочности.
Свинец и никель, присутствующие в старых изделиях, запрещены Международным Стандартом. Они вызывают аллергию. Для удешевления материала в него добавляют цинк.
Кольца из разных металлов
Покрытие для сплава
Бижутерия на основе олова и цветных металлов покрывается тонким слоем золота, серебра и платины. Толщина напыления составляет тысячные доли мм. В результате бижутерия приобретает вид изделия из благородных материалов и защищено от окисления.
Для придания блеска, прочности, эстетического вида ювелирные изделия покрывают:
- родием;
- элоксалом;
- лаком.
Золотой сплав мягкий, легко повреждается твердыми предметами, темнеет от воды и других веществ. Платина быстро теряет глянец без защитного покрытия. Только родий стойкий, твердый, не реагирует на воздействие влаги, жиров, кислот и со временем не теряет свой блеск.
Стоимость родия значительно выше других благородных металлов. Он очень твердый и его тяжело обрабатывать. Для защиты изделий из ювелирных и золотых сплавов применяют напыление из родия. Покрытие производят в гальванических ваннах.
Элоксал иногда используют как материал для изготовления украшений. Но чаще его применяют в качестве надежного и декоративного защитного покрытия. Напыление окиси алюминия — Al2O3 сначала ложится тонким слоем. Затем, когда толщина его увеличивается, он становится пористым. Залитую в пустоты краску удерживает прочно, на молекулярном уровне. Это позволяет не только покрыть изделие защитным слоем, но и придать ему любой цвет. После обработки прессованием поверхность начинает блестеть.
Лаком покрывают в основном дешевые изделия из бижутерного сплава и серебра. Прозрачный слой не пропускает влагу и другие разрушающие вещества, сохраняет блеск. Покрытие действует непродолжительное время, несколько месяцев, пока не сотрется.
Внешний вид
Серебро 925 получило название Стерлинговое. Оно содержит лигатуру из 7,5% меди. Соединяются металлы при температуре 894–900⁰. Сплав имеет вид белого золота или платины, легко обрабатывается, приобретает любую форму. При желании можно сделать чернение, заменив медь германием. Поверхность гладкая, блестящая, длительное время не теряющая свой вид.
Отличить серебро 925 от белого золота внешне невозможно. Изделия из обоих материалов покрываются родием, они имеют одинаковый цвет и блеск. Надо смотреть на клеймо. Золота 925 пробы не бывает. Если маркировки нет, требовать у продавца сертификат. Стоимость стерлингового серебра примерно вполовину ниже золота.
Добавление незначительного количества лигатуры изменяет свойства металлов. Они становятся пластичнее, прочнее. Это позволяет создавать изделия с мелкими деталями, филигранными узорами. Внешне отличить драгоценный металл и бижутерный сплав может только специалист.
Слитки серебра (Фото: pixabay.com)
Текст книги «Материалы для ювелирных изделий»
7.4. Сплавы меди, имитирующие золотые и серебряные сплавы
С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.
Сплавы меди с цинком, алюминием, никелем, марганцем, платиной и другими металлами обладают широкой цветовой гаммой. Эти сплавы используются не только для хорошей имитации, но и для нанесения декоративного покрытия – «золочения». Большой популярностью в качестве заменителя золота используется кремнистая латунь ЛК80-ЗЛ. Отливки, полученные из этого сплава, имеют гладкую поверхность и красивый золотистый цвет.
В табл. 7.4 представлены сплавы, наиболее часто используемые при имитации золотого сплава 583-й пробы.
Таблица 7.4
Химический состав сплавов, имитирующих сплавы золота
Медно-никелевые сплавы с добавками цинка, алюминия, олова, свинца и железа обладают достаточно высокими декоративными свойствами, имитируя серебро и его сплавы. Их можно использовать для литья (например, нейзильбер), для штамповки (мельхиор, томпак) и волочения. Наиболее широко для изготовления ювелирных изделий под серебро применяется нейзильбер (нем. «новое серебро»), содержащее помимо меди 15 % никеля и 20 % цинка.
Химический состав сплавов, имитирующих серебро, приведен в таблице 7.5.
Таблица 7.5
Химический состав сплавов, имитирующих серебро
Непрерывное повышение требований к изделиям бижутерии способствовало созданию ряда сплавов, которые наряду с высокой прочностью прекрасно имитируют серебряные и золотые сплавы (табл. 7.6).
Таблица 7.6
Химический состав имитирующих сплавов на основе меди
Сплавы на основе алюминия
Алюминиевые сплавы классифицируют по технологии изготовления (деформируемые и литейные), способности к термической обработке (упрочняемые и неупрочнямые) и свойствам (рис. 8.1).
Рис. 8.1. Диаграмма состояния алюминий – легирующий элемент (схема).
А – деформированные сплавы; В – литейные сплавы; I – сплавы неупрочняемые и II – упрочняемые термической обработкой.
8.1. Деформируемые сплавы на основе алюминия
К сплавам, не упрочняемым термической обработкой, относятся сплавы АМц и АМг (табл. 8.1).
Сплавы отличаются высокой пластичностью, хорошей свариваемостью и высокой коррозионной стойкостью.
Сплавы АМц относятся к системе Al – Мп (рис. 8.2, а).
Структура сплава АМц состоит из α-твердого раствора и вторичных выделений фазы МпAl6, переходящих в твердый раствор при повышении температуры. В присутствии Fe вместо МпAl6 образуется сложная тройная фаза (MnFe)Al6, практически нерастворимая в алюминии, поэтому сплав AlМп не упрочняется термической обработкой. В отожженном состоянии сплав обладает высокой пластичностью и низкой прочностью.
Таблица 8.1
Химический состав деформируемых алюминиевых сплавов
Сплавы АМг относятся к системе Al – Mg (рис. 8.2, б).
Магний образует с алюминием α-твердый раствор, концентрация которого при повышении температуры увеличивается от 1,4 до 17,4 % в результате растворения фазы Mg2 Al3. Однако сплавы, содержащие до 7 % Mg, дают очень незначительное упрочнение при термической обработке.
Рис. 8.2. Диаграммы состояния: а
– Al-Мn;
б
– Al-Мg;
в
– Al-Сu.
Сплавы типа АМц и АМг применяют для изготовления изделий методом вытяжки (колпачки авторучек, пеналы, бижутерия) и сварки (художественные изделия), от которых требуется высокая коррозионная стойкость.
К сплавам, упрочняемым термической обработкой, относятся сплавы нормальной прочности, высокопрочные и др. Типичные представители этих сплавов – дуралюмины (маркируют буквой Д). Они характеризуются хорошим сочетанием прочности и пластичности и относятся к сплавам системы Al – Си – Mg. Согласно диаграмме состояния Al – Си (рис. 8.2, в)
медь с алюминием образуют твердый раствор, максимальная концентрация меди в котором 5,65 % при эвтектической температуре. С понижением температуры растворимость меди уменьшается, достигая 0,1 % при 20 °C. При этом из твердого раствора выделяется фаза θ (СuAl2), содержащая ~54,1 % Сu. В сплавах, дополнительно легированных магнием, помимо фазы θ образуется еще фаза S (СuМgAl2). Чем больше меди содержится в сплаве, тем большее количество фазы θ будет в его структуре (Д1). Увеличение содержания магния приводит к росту количества фазы S и повышению прочности сплава (Д16). Разница в свойствах особенно значительна после упрочняющей термической обработки. Например, у свежезакаленного сплава Д1 σв = 24–26 кг/мм2, δ = 20–22 %, НВ = 60–80 кг/мм2. В результате естественного старения дуралюмин Д1 приобретает следующие механические свойства: σв = 38–42 кг/мм2; δ = 18 %; НВ = 100 кг/мм2.
При закалке сплав Д16 нагревают до 495–505 °C, Д1 – до 500–510 °C, затем охлаждают в воде при 40 °C. После закалки структура состоит из пересыщенного твердого раствора и нерастворимых фаз, образуемых примесями. При естественном старении происходит образование зон Гинье – Престона, богатых медью и магнием. Старение продолжается 5–7 суток. В бинарном сплаве Al – Си искусственное старение, заключающееся в старении после закалки при повышенной температуре (100 °C), сокращает время старения до 1–1,2 суток. При увеличении времени старения при температурах 150–200 °C происходит коагуляция упрочняющей θ-фазы (СиAl2), в результате чего сплав разупрочняется. Таким образом, процесс искусственного старения протекает в несколько стадий. Первая стадия, как и в случае естественного старения, состоит из образования зон Гинье – Престона, имеющих такую же природу, но обладающих большими размерами. На второй стадии с течением времени зоны переходят в промежуточную θ-фазу, а затем (в третьей стадии) в устойчивую θ-фазу, близкую к металлическому соединению СиAl2. В сплаве Д16 большую роль играет тройное металлическое соединение Al2CuMg (фаза S). В этом сплаве упрочнение при старении происходит вследствие образования зон, обогащенных медью и магнием, переходящих при нагревании в промежуточную фазу S’, которая обладает искаженной решеткой соединения Al2CuMg. Дальнейший переход фазы S’ в фазу S (Al2CuMg) и ее коагуляция вызывают разупрочнение сплава. В алюминиевых сплавах для ювелирных изделий искусственное старение не применяется.
2. Литейные сплавы на основе алюминия
Некоторые ювелирные изделия, такие как предметы быта, курительные наборы, столовые приборы, оружейные накладки, элементы перьевых и шариковых ручек, а также бижутерия, поверхность которых анодируется или обрабатывается катодно-импульсной бомбардировкой (под золото), выполняются методом литья из алюминиево-кремниевых сплавов (силуминов) с высокими литейными свойствами.
Согласно диаграмме состояния системы Al – Si (рис. 8.3) кремний не образует с алюминием химических соединений и присутствует в сплавах алюминия в элементарном виде. Но по своим физическим свойствам кремний близок к химическим соединениям, он обладает высокой твердостью (HRC 106) и так же, как и они, хрупок.
Несмотря на заметную и переменную растворимость, кремний не придает алюминию способность к упрочнению термической обработкой, что связано с неблагоприятным характером распада твердого раствора кремния в алюминии. Растворяясь в алюминии, кремний несколько упрочняет его, незначительно снижая при этом пластические свойства. Алюминиевый сплав, содержащий даже 10–12 % Si, остается достаточно пластичным.
Рис. 8.3. Диаграмма состояния системы AI – Si.
Силумины подразделяют на двойные (или простые), легированные только кремнием, и специальные, в которых помимо кремния содержатся в небольшом количестве другие легирующие компоненты (Mg, Си, Mn, Ni). Силумины относятся к числу эвтектических или доэвтектических сплавов. Без учета влияния других компонентов (кроме Si) их структура представляет собой либо эвтектику α + Si (АЛ2), либо первичные кристаллы α + эвтектика α + Si (АЛ4, АЛ9, АЛБ).
Кремний имеет переменную растворимость в алюминии, которая возрастает от <0,1 % при комнатной температуре до 1,65 % при эвтектической температуре (577 °C). Поэтому нагревом алюминиево-кремниевых сплавов до температуры, близкой к эвтектической, и быстрым охлаждением можно получить пересыщенный твердый раствор кремния в алюминии, который при последующем старении распадается с выделением дисперсных частиц кремния. Однако упрочняющий эффект от указанной обработки крайне мал и не имеет практического значения. Таким образом, двойные (простые) силумины относятся к числу термически неупрочняемых сплавов, обладающих невысокими прочностными характеристиками.
Единственный способ несколько повысить их прочность и пластичность – измельчение эвтектических кристаллов кремния, которое может быть достигнуто двумя путями: 1) увеличением скорости охлаждения при кристаллизации, 2) введением в сплавы малых добавок (сотые доли процента) щелочных металлов (натрия, лития, стронция). Первый путь дает хорошие результаты. Однако он находит ограниченное применение в изготовлении тонкостенных ювелирных отливок с мелкими деталями рельефа, которые могут не залиться при литье в металлический кокиль или при литье под давлением. Второй путь – модифицирование структуры силуминов малыми добавками – более универсален. Модифицированием структуры обычно называют изменение, улучшение структуры при введении малых добавок не вследствие образования каких-либо новых структурных составляющих, а в результате влияния этих добавок на величину и форму структурных составляющих, образованных другими компонентами.
На практике широко применяют модифицирование силуминов натрием или смесью его солей (60 % NaF + 25 % NaCl + 15 % Na3AlF6 или 40 % NaF + 45 % NaCl + 15 % NagAlF6 и др.), которые одновременно используют в качестве рафинирующих флюсов).
Рис. 8.4. Структура эвтектического силумина (11,7 % Si): а – сплав не модифицирован: б – сплав модифицирован натрием.
Введение 0,01 % Na в сплавы Al – Si приводит к резкому измельчению кристаллов эвтектического кремния, поскольку присутствующий в расплаве натрий при кристаллизации адсорбируется на поверхности кристаллов кремния и препятствует их дальнейшему росту.
Присутствие натрия в силуминах вызывает, кроме того, сдвиг эвтектической точки в сторону более высоких концентраций кремния, поэтому эвтектические и заэвтектические до модифицирования сплавы после модифицирования становятся доэвтектическими, и в них вместо кремния появляются дендриты α-твердого раствора, которые при кристаллизации становятся ведущей фазой. На рис. 8.4 показаны структуры немодифицированного и модифицированного силумина с 11,7 % кремния.
На рис. 8.5 показано влияние способа охлаждения при кристаллизации и модифицирования натрием на механические свойства двойных алюминиево-кремнистых сплавов.
Рис. 8.5. Механические свойства сплавов AI – Si в зависимости от содержания кремния:
1 – сплав модифицированный литье в землю, 2 – сплав немодифицированный, литье в землю, 3 – сплав немодифицированный, литье в кокиль.
Эффект модифицирования, т. е. улучшение механических свойств вследствие модифицирования, тем больше, чем выше содержание кремния в сплаве, поскольку при модифицировании меняются величина и форма кристаллов кремния. На силумины, содержащие менее 5 % Si, модифицирование положительного действия не оказывает.
Для ювелирного литья применяют сплав АЛ2. Плотность эвтектического силумина АЛ2 составляет 2,66 г/см3. Он имеет высокую коррозионную стойкость в воздушной атмосфере, включая атмосферу морского воздуха. Небольшие добавки марганца и магния дополнительно повышают коррозионную стойкость. Высокие литейные свойства силуминов определяют их хорошую свариваемость, что важно при сборке ювелирных изделий. Термически не-упрочняемый эвтектический силумин АЛ2 имеет высокую пластичность, но невысокие прочностные характеристики. Существенное преимущество сплава АЛ2 – малый интервал кристаллизации (близкий к нулю), поэтому в отливках не образуется усадочной пористости, что очень важно при доводочных операциях – шлифовке и полировке ювелирных отливок, так как при механической обработке усадочная пористость вскрывается и ухудшает поверхность изделия. В ювелирном литье указанные дефекты не допускаются.
В художественном литье образование концентрированных усадочных раковин (что характерно для сплавов с малым интервалом кристаллизации) вызывает трудности при отливке средних и сложных по конфигурации отливок. В этом случае применяют упрочняемый термообработкой сплав АЛ4, который по сравнению со сплавом АЛ2 имеет значительно меньшую концентрированную усадочную раковину, что важно при отливке барельефов, скульптур и пр.
Отливки из сплава АЛ4 подвергают закалке и отпуску. В процессе нагрева происходят некоторое укрупнение частиц кремния в эвтектике и переход в раствор (при закалке) и выделение (при отпуске) в высокодисперсной форме частиц фазы Mg2Si, что вызывает дополнительное упрочнение сплава. В ювелирном и художественном литье часто применяют сплав АЛ9 (система Al – Si – Mg). Сплав содержит 6–8 % Si, 0,2–0,4 % Mg. Перед заливкой форм его не модифицируют, а также не проводят искусственное старение отливки (отливки только закаливают). В сплаве сочетаются удовлетворительная прочность, высокая пластичность с хорошими литейными свойствами. В табл. 8.2 приведены составы алюминиевых сплавов, применяемых в ювелирном и художественном литье.
Таблица 8.2
Состав алюминиевых литейных сплавов, применяемых в ювелирном и художественном литье
Сплавы второй группы имеют низкую линейную усадку (1–1,4 %), высокую жидкотекучесть β50—420 мм) и нулевую склонность к образованию горячих трещин. Сплавы хорошо обрабатываются резанием, хорошо шлифуются и полируются. При помощи анодирования электродугового метода имитируют золото различных проб.
Технология анодирования сплавов на основе алюминия следующая. Алюминиевую отливку с хорошо подготовленной поверхностью (обезжиренной, шлифованной и полированной) и свинцовый катод помещают в охлаждаемую ванну с раствором серной кислоты (плотность 200–300 г/л). Процесс протекает при плотностях тока 10–50 мА на 1 см2 отливки (требуемое напряжение источника до 50—100 В). Температура электролита – до +20 °C. Образующаяся при повышенных температурах окисная пленка бесцветная, что позволяет окрашивать ее любыми красителями. При пониженных температурах пленка окрашивается в золотистый цвет (под золото).
В электродуговом методе, получившем название конденсация ионной бомбардировкой (КИБ), используется вакуумная камера, в которой размещен катод (рис. 8.6). В результате приложенного напряжения между корпусом камеры и катодом возникает электрическая дуга. Из катодного пятна вылетают ионы, электроны и нейтральные частицы. Некоторая доля этих частиц попадает на изделие, расположенное внутри камеры. Вначале частицы разрыхляют поверхностный слой изделия, эффективно очищая его и нагревая до 300–500 °C. Далее происходит насыщение поверхностного слоя атомами того материала, из которого изготовлен катод. Если в камеру ввести азот, то на поверхности изделия формируется нитридное покрытие.
Рис 8.6. Схема нанесения покрытий методом КИБ:
1 – катод; 2 – нейтральные частицы; 3 – электроны; 4 – ионы; 5 – отливка.
Широкое распространение получили покрытия из нитрида титана, которые удачно имитируют позолоту. Причем, регулируя параметры процесса, можно добиться полного сходства с золотом различных проб. Такие покрытия отличаются прочным сцеплением с материалом изделия и высокой износостойкостью. При нанесении покрытий методом КИБ предъявляются очень жесткие требования к качеству поверхности изделий: на ней не должно быть загрязнений, таких как ржавчина, масло и другие неметаллические материалы.
Сплавы на основе цинка
Цинк широко используют для изготовления бижутерии. Застежки, молнии, пуговицы, элементы недорогих бус, декоративные накладки на подарочные папки и ружья, личные украшения (цепочки), ювелирные шкатулки и т. п. выполняются из цинковых сплавов. В чистом виде цинк применяется для антикоррозионных и декоративных покрытий.
Механические свойства цинка характеризуются следующими средними показателями: σв = 15 кГ/мм2, δ = 20 %, ψ = 70 % и НВ = 30 кГ/мм2.
Сплавы на основе цинка применяют для получения художественных и ювелирных отливок литьем под давлением и в кокиль.
Согласно диаграмме состояния системы Zn – Al, приведенной на рис. 9.1, первичными кристаллами являются твердый раствор алюминия в цинке (β-фаза), а эвтектикой – смесь кристаллов α и β (α-твердый раствор цинка в алюминии). Однако при медленном охлаждении α-фаза при температуре 270 °C распадается с образованием эвтектоида: α → α1 + β, где α1 является также твердым раствором цинка в алюминии, но содержит в своем составе 27 % Zn. Фаза α имеет в составе: 79 % Zn и 21 % Al.
Необходимо указать, что если быстрым охлаждением удается предотвратить распад α-твердого раствора, то в силу неустойчивого его состояния при обычных температурах происходит распад уже в готовых изделиях. Этот процесс часто называют естественным старением. При старении происходит изменение свойств и линейных размеров отливок. Последнее характерно для цинко-магниевых сплавов, а в цинко-алюминиевых и цинко-медных сплавах изменение линейных размеров не наблюдается. Двойной сплав цинка с алюминием имеет структуру, указанную на рис. 9.2.
Рис. 9.1. Диаграмма состояния Zn-AI.
Рис. 9.2.
Микроструктура сплава цинка с 4 % алюминия. Видны светлые первичные кристаллы β-твердого раствора и эвтектика α + β (темное поле).
Из других сплавов для ювелирного и художественного литья следует выделить бинарный сплав цинк – медь и тройной сплав для литья под давлением, содержащий 4 % Al, 3 % Си, 0,1 % Mg, остальное Zn. Сплав Zn – Си выгодно отличается от сплава Zn – Al тем, что в нем не наблюдается старение при тех же литейных свойствах. Однако он имеет более низкие механические свойства. Тройной цинковый сплав для литья под давлением с 4 % Al, 3 % Си, 0,1 % Mg имеет наиболее высокие механические свойства и лучшие литейные качества по сравнению с другими цинковыми сплавами.
Припои
Цинковые припои в основном используют для пайки алюминиевых сплавов. Хорошо оправдал себя припой, представляющий сплав цинка с 40 % кадмия. Этот сплав имеет температуру плавления 266 °C, временное сопротивление 100 МПа и относительное удлинение 5 %.
Припой является заэвтектическим сплавом системы кадмий – цинк, структура которого состоит из первичных кристаллов P-твердого раствора кадмия в цинке и эвтектики (α + β), где α– твердый раствор цинка в кадмии. Диаграмма состояния приведена на рис. 9.3.
Рис. 9.3. Диаграмма состояния Cd – Zn.
Серебро и его сплавы
Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.
Серебро – металл белого цвета. Считается вторым после золота благородным металлом. Полированное чистое серебро практически не изменяет свой цвет на воздухе. Однако под воздействием сероводорода воздуха на поверхности со временем образуется темный налет – сульфид серебра Ag2S. Серебро по сравнению с золотом и платиной менее устойчиво в кислотах и щелочах.
Серебро прекрасно деформируется как в холодном, так и в горячем состоянии. Хорошо полируется, имеет высокую отражательную способность.
Широкое применение серебра в фотографии и электротехнике обусловлено его уникальными физическими свойствами – самой высокой среди металлов электро– и теплопроводностью.
Несмотря на то что серебро сравнительно редкий элемент (его содержание в земной коре всего 7 х 10-6%, в морской воде еще меньше – 3 х 10-8%), оно на протяжении многих столетий широко используется в ювелирном производстве. Это в первую очередь связано с высокими декоративными свойствами серебра, а также с его уникальной пластичностью. Ювелирные изделия из серебра часто выполняются в технике скани – узора из тонкой проволоки. Из серебра изготавливают нити для серебряного шитья.
Для изготовления ювелирных изделий, а также в электронной промышленности используется как чистое серебро, так и его сплавы с медью и платиной.
Марки серебра и серебряных сплавов регламентированы ГОСТом 6836-80.
Стандарт распространяется на сплавы, предназначенные для электротехнических проводников и контактов, ювелирных изделий, струн музыкальных инструментов.
Согласно указанному стандарту, серебряные сплавы обозначают буквами Ср, вслед за которыми указываются лигатуры (Пт – платина, Пд – палладий, М – медь). Цифры после буквенного обозначения сплава указывают массовую долю серебра, выраженную в промилле (десятых долях процента) для чистого серебра и серебряно-медных сплавов (например, Ср999, СрМ91б, СрМ950 и т. д.), или массовую долю основных легирующих компонентов, выраженную в процентах (в этом случае цифра отделяется от буквенного обозначения не пробелом, а дефисом, например: СрПл-12 (12 % Pt, 88 % Ag), СрПд-40 (40 % Pd, 60 % Ag).
Все серебряные сплавы (ГОСТ 6836-80) могут быть использованы в электротехнической промышленности для производства контактных групп различного назначения. Для изготовления струн музыкальных инструментов используется сплав СрМ 950.
ГОСТ 6836-80 устанавливает марки серебра и серебряных сплавов с медью, платиной и палладием, предназначенных для изготовления полуфабрикатов изделий методом литья, горячей и холодной деформации. Прочие серебряные сплавы регламентируются отраслевыми стандартами или ТУ.
Химический состав серебра и его сплавов должен соответствовать нормам, указанным в таблицах 10.1, 10.2, 10.3 (ГОСТ 6836-80). Серебряно-платиновые сплавы, как более дорогие, в ювелирной промышленности применяются реже.
Таблица 10.1
Серебро
Таблица 10.2
Серебряно-медные сплавы
Таблица 10.3
Серебряно-платиновые сплавы.
Разновидности
Ювелирный сплав в своем составе имеет различные компоненты. Для изготовления бижутерии и других предметов обычно применяют:
- бронзу;
- латунь;
- мельхиор;
- пьютер;
- нейзильбер.
Бронза — соединение меди и цинка. Имеет красноватый цвет червонного золота. Для придания различных качеств легируется алюминием, бериллием, кремнием, фосфором.
Бронза — сплав двух компонентов меди и цинка без добавок. Для производства материала используют чистую медь и галмеем — руда цинка. Отличается высокой прочностью, твердостью.
Мельхиор представляет собой сложный сплав, в состав которого входит не цветной металл:
- медь;
- марганец;
- железо;
- никель.
Внешне похож на серебро. Отличается высокой твердостью и прочностью. Требует постоянного ухода, поскольку быстро темнеет.
Пьютер — сплав на основе олова. Мягкий и податливый материал легко покрывается серебром и золотом.
Нейзильбер, трехкомпонентный сплав, состоит из: цинка, меди, никеля. Устойчив к воздействию влаги, имеет красивый желтоватый оттенок.
Бижутерия из бронзы
Блестящее стерлинговое серебро
В течение многих лет люди стремились получить не тускнеющее серебро, но только в последние 5-6 лет произошел прорыв с реальным улучшением качеств стандартного стерлингового серебра. До недавнего времени, в основном, использовали только один стандартный сплав стерлингового серебра: 92,5% серебра и 7,5% меди, качества и характеристики которого хорошо известны. Красивый, белый, блестящий, декоративный металл, легкий в изготовлении и литье, но на нем сразу же появляется окалина при использовании обычных методов пайки и отжига. При полировке, если не контролировать процесс, на поверхности металла может возникнуть неприятный оттенок черного.
Теперь у нас есть составы, которые улучшают твердость и минимизируют время финишных операций благодаря антипригарным свойствам и улучшенному сопротивлению потускнению.
В начале 80-х я попробовал сплав, содержащий кремний и цинк, но нашел его слишком мягким и не продолжил разработку. Чуть позже, при посещении симпозиума в Санта-Фе, мне предложили формулу стойкого к окислению серебряного сплава. Он, безусловно, оказался стойким к окислению в пламени горелки, но тоже был слишком мягким, чтобы его можно было использовать в ювелирном деле.
Необходимо было придать этому сплаву определенную степень твердости. Поэтому для увеличения твердости было решено ввести разумные количества германия.
Первоначально лигатура содержала семь элементов. Чтобы сбалансировать все характеристики потребовалось много экспериментов, так как изменение в концентрации компонентов даже менее 0,1% может существенно изменить результат. Аккуратно добавляя, главным образом, германий, цинк, кремний и микроэлементы, мы смогли разработать ряд сплавов стерлингового серебра.
Нами запатентованы сплавы серебра 830, 925 и 950 проб.
Где применяется
Бронза востребована в промышленности для изготовления прокладок, фитингов, декоративных ручек на двери. Из нее отливают кубки, блюда, делают элементы для решеток окон, перил. В некоторых странах используются монеты, выполненные из бронзы.
Из латуни делают зубчатые венцы, элементы декора фасадов мебели, краны, уплотнительные кольца. Из украшений:
цепочки, кольца, серьги, браслеты и другие аксессуары.
Из мельхиора изготавливают столовые приборы, посуду, кувшины, блюда. Часто делают бижутерию под серебро.
Из пьютерных сплавов изготавливают реплики изделий из драгоценных металлов и различную бижутерию с покрытием драгоценными металлами.
Из нейзильбера штампуют медали и другие награды. Сплавы используют для изготовления деталей медицинского оборудования, точных приборов. Из нейзильбера делают ювелирные украшения, лады для гитары и посуду. Часто путают с мельхиором.
Вдохновение для сплава
Когда требуется металл с определенными свойствами, может быть принято решение о создании нового сплава, если после исследования рынка, установлено, что такого нет среди многих предлагаемых коммерческих сплавов.
Легко взять несколько компонентов, расплавить их вместе в тигле и посмотреть, что получится, но для достижения желаемого результата требуется небольшое разумное планирование. Например, конечный сплав должен быть твердым или мягким? Будет ли он быстро сплавляться и затвердевать? Какой должен быть цвет у сплава? Какие еще особые качества необходимы для конкретного использования?
В идеале требуется, чтобы сплав можно было легко обработать с использованием обычных технологий изготовления ювелирных изделий, а также легко полировать для получения блестящей поверхности в изделии.
Основные свойства сплава должны соответствовать стандартам на драгоценные металлы, установленным традициями и поддерживаемым законодательством большинства стран мира.
Следует изучить известные и проверенные качества металлов и элементов, ранее использовавшихся для получения аналогичных сплавов. Даже с учетом всех этих параметров все же имеется очень широкий набор элементов, которыми можно рисовать при достижении требуемых свойств.
Преимущества и недостатки
В результате соединения различных материалов бижутерный сплав приобретает необходимые качества. Внешний вид изделий позволяет изготавливать украшения с дорогим видом по бюджетной цене. Сплавы из цветных металлов востребованы в промышленности.
Главный недостаток изделий, выполненных из бижутерных сплавов, заключается в недолговечности покрытия. Нужно бережно обращаться с кольцами и цепочками, постоянно за ними ухаживать. Когда тонкая пленка стирается, материал начинает окисляться и разрушаться.
Сплавы серебра
В серебряных сплавах в качестве лигатуры применяют медь, цинк, кадмий, алюминий и никель.
Характеристики серебряных сплавов:
- сплав серебра с медью может иметь цвет от белого до красно-медного в зависимости от процентного соотношения металлов, сочетает в себе прочность с пластичностью;
- сплав серебра с цинком имеет белый цвет, хорошо поддается ювелирной обработке;
- сплав серебра и кадмия белого цвета, твердый, при содержании кадмия более 50 процентов приобретает хрупкость;
- сплав серебра с алюминием имеет светло-серый цвет, пластичен, если алюминия в сплаве не более 6 процентов;
- сплав серебра с медью и кадмием белого цвета, хорошо поддается ювелирной обработке.
Системы платиновых проб
Аналогично золотым пробам, для платины также применяются три варианта проб: метрическая, золотниковая и каратная. Золотниковая проба использовалась для ювелирных украшений только в России, и была заменена на метрическую после 1927 года. В Западной Европе и США принято использовать каратную платиновую пробу. Все виды проб можно легко перевести из одного в другой — подробнее об этом в статье о пробах золотых сплавов. В таблице ниже — соответствие между пробами разных видов для платины: